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Abstract
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For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of

Carøe and Schultz from a computational perspective with the aim of its parallelization.

We address an important bottleneck of parallel execution by identifying a formulation

that permits the parallel solution of the master program by using structure-exploiting

interior-point solvers. Our results demonstrate the potential for parallel speedup and the

importance of regularization (stabilization) in the dual optimization. Load imbalance is

identified as a remaining barrier to parallel scalability.
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1. Introduction

Stochastic mixed-integer programmming (SMIP) models with recourse [1, 2] are com-

monly used in practice for making discrete decisions under uncertainty. Such models arise

in applications in energy, routing, scheduling, production planning, and others, where parts
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or all of the data for the model are not completely known at the time decisions must be

made, but can be approximated by some known stochastic model.

Although many practical instances remain difficult to solve, significant progress has

been made in developing algorithms to solve these problems, particularly those with special

structure such as pure-integer recourse or pure-binary first-stage decisions (for reviews, see

[1–3]). For more general SMIP problems, Sen [3] suggests the dual decomposition (DD)

approach of Carøe and Schultz [4] or the branch-and-price (BP) approach of Lulli and

Sen [5]. This paper focuses on these two approaches from the perspective of parallel

computing.

In our theoretical development in §2, we demonstrate an effective equivalence between

the nonsmooth Lagrangian dual problem solved by DD and the restricted master problem

solved by BP. While it was previously known that these problems have the same optimal

values, the effective equivalence is stronger in that solving one provides an optimal solu-

tion to both. This fact relates to the so-called primal-recovery properties of subgradient

approaches applied to Lagrangian duals, which only recently have become more widely

known in the optimization community [6–8]. Both approaches are therefore seen to solve

the same relaxation simply by different algorithms for nonsmooth optimization, the former

by the proximal bundle method [9] and the latter by a more slowly convergent cutting-plane

method, as discussed in §3.

With this equivalence established, we proceed in §4 to present our analysis of and a

new formulation for the quadratic program (QP) master problem solved at each iteration

of the proximal bundle method, considering the particular structure induced by relaxing

nonanticipativity constraints. The new formulation results in a block-angular QP that

can be solved efficiently by recently developed interior-point solvers for structured QPs.

Improvements of several orders of magnitude are observed over the QP solvers from off-

the-shelf proximal bundle codes.

Reducing the time spent solving the master problem significantly increases the scope for
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parallelism, which has previously been identified but not exploited in an implementation.

In §5, we present our numerical results from a preliminary parallel implementation on a

high-performance cluster.

2. Dual decomposition and branch-and-price

Consider the following two-stage SMIP with recourse:

z = min{c>x+Q(x) : Ax ≤ b, x ∈ X}, (1)

where

Q(x) = Eξ
[
min

{
q(ξ)>y : Wy ≤ h(ξ)− T (ξ)x, y ∈ Y

}]
. (2)

The parameters c ∈ IRn1 , b ∈ IRm1 , A ∈ IRm1×n1 , and W ∈ IRm2×n2 are fixed and known.

The vector ξ is a random variable, which we assume here to have a discrete distribution with

r possible realizations ξ1, . . . , ξr and corresponding probabilities p1, . . . , pr. Realization

j = 1, . . . , r, known as scenario j, contains the data (q(ξj), h(ξj), T (ξj)), now (qj , hj , Tj)

for brevity, where the vectors qj and hj and the matrix Tj have conformable dimensions.

The sets X ⊆ Rn1
+ and Y ⊆ Rn2

+ denote restrictions that some or all of the variables take

integer or binary values. For j = 1, . . . , r, define the set

Sj := {(x, yj) : Ax ≤ b, x ∈ X,Tjx+Wyj ≤ hj , yj ∈ Y } .

The deterministic equivalent problem to (1), which we assume to be feasible and bounded,

is

z = min

c>x+

r∑
j=1

pjq
>
j yj : (x, yj) ∈ Sj , j = 1, . . . , r

 . (3)
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Also consider the equivalent split-variable formulation [10]:

z = min

{
r∑
j=1

pj(c
>xj + q>j yj) : (xj , yj) ∈ Sj , j = 1, . . . , r, x. = x1 = . . . = xr

}
. (4)

The constraints x. = x1 = . . . = xr are known as the nonanticipativity conditions, which

force the first-stage decision x to be the same under each scenario. We have introduced an

additional variable x. and the nonanticipativity constraints are represented as

xj − x. = 0, j = 1, . . . , r. (5)

This representation of non-anticipativity, as used by Lulli and Sen [5] differs from the one

used by Carøe and Schultz [4], who instead represent it by a set of equalities solely on

the variables x1, . . . , xr of the form
∑r

j=1Hjxj = 0. (For example, x1 − xj = 0, j =

2, . . . , r.) The representations are equivalent; however, we see later that the form used here

is advantageous for computation.

Relaxing the nonanticipativity constraints (5), one may write the Lagrangian relaxation

of (4) as

D(λ1, . . . , λr) = min

{
r∑
j=1

[
Lj(xj , yj , λj)− λ>j x.

]
: (xj , yj) ∈ Sj , j = 1, . . . , r

}
, (6)

where Lj(xj , yj , λj) = pj(c
>xj + q>j yj) + λ>j xj for j = 1, . . . , r. As x. is unconstrained,

the condition
∑r

j=1 λj = 0 is required for boundedness of (6). With this condition, the

λ>j x. terms vanish, and (6) is separable into D(λ1, . . . , λr) =
∑r

j=1Dj(λj), where, for

j = 1, . . . , r,

Dj(λj) = min
xj ,yj
{Lj(xj , yj , λj) : (xj , yj) ∈ Sj} . (7)

For any choice of λ1, . . . , λr, it is clear that D(λ1, . . . , λr) ≤ z; that is, the Lagrangian

relaxation provides a valid lower bound on the optimal value z of (1). A natural problem
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is then to find the best such bound. This is known as the Lagrangian dual problem, which

is expressed as [3]

zLD = max
λ1,...,λr


r∑
j=1

Dj(λj) :
r∑
j=1

λj = 0

 . (8)

Because of the nonconvexity introduced by the integer requirements, the optimal value

zLD is typically, but not always, strictly less than z. We restate Proposition 2 of [4], which

provides a characterization of the optimal value.

Proposition 1. The optimal value zLD of the Lagrangian dual (8) equals the optimal value

of the linear program

min

{
r∑
j=1

pj(c
>xj + q>j yj) : (xj , yj) ∈ conv (Sj) , xj = x., j = 1, . . . , r

}
. (9)

The Lagrangian dual (8) is a concave, nonsmooth optimization problem, which Carøe

and Schultz [4] propose to solve with subgradient methods (or more properly in this context,

supergradient methods). The bounds generated from the Lagrangian dual are used within

a branch-and-bound procedure. This is the so-called dual decomposition (DD) approach.

On the other hand, Lulli and Sen [5] propose to solve (9) directly using a column

generation procedure. Below we show that these two approaches are duals of each other,

and that it is easy to recover a primal solution to (9) from DD. This primal solution can

then be used as in a branch and price algorithm.

In the rest of this section, we first present the classical subgradient cutting-plane ap-

proach and then demonstrate that applying the cutting-plane method to (8) is equivalent

to solving (9) by column generation.
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Observe that (8) is equivalent to

max

r∑
j=1

θj (10)

s.t.
r∑
j=1

λj = 0, (11)

θj ≤ Dj(λj), j = 1, . . . , r. (12)

Each Dj(λj) is concave in λj , and we say that γkj is a subgradient of Dj(λj) at the

point λkj if, for all λj ,

Dj(λj) ≤ Dj(λ
k
j ) + (γkj )>(λj − λkj ).

Since Lj(xj , yj , λj) = pj(c
>xj+q>j yj)+λ>j xj , given a λkj , the corresponding subgradient γkj

is equal to xkj , where (xkj , y
k
j ) is a solution to (7). The cutting-plane method (as depicted

by the pseudocode in Figure 1) replaces each Dj(λj) in (12) with a relaxation using a set

of subgradients and solves the following linear program at each iteration:

max

r∑
j=1

θj (13)

s.t.

r∑
j=1

λj = 0, (14)

θj ≤ Dj(λ
k
j ) + (xkj )

>(λj − λkj ), j = 1, . . . , r, k = 1, . . . ,K. (15)

Initialize: Choose a relative convergence tolerance ε.
K ← 1, λKj ← 0 for j = 1, . . . , r.
Solve (7) for j = 1, . . . , r, saving optimal value Dj(λ

K
j ) and solution xKj .

Step 1: Solve (13)-(15), obtaining optimal θ∗j and λ∗j for j = 1, . . . , r.
Step 2: K ← K + 1, λKj ← λ∗j for j = 1, . . . , r.

Solve (7) for j = 1, . . . , r, saving optimal value Dj(λ
K
j ) and solution xKj .

Step 3: If
∑

j

[
θ∗j −Dj(λ

K
j )
]
/
[
1 + |

∑
j Dj(λ

K
j )|
]
< ε terminate;

else add Dj(λ
K
j ) + (xKj )>(λj − λKj ) to (15).

Step 4: Goto Step 1

Figure 1: Pseudocode for cutting-plane algorithm.
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It is easy to recover a primal solution to (9) from the linear programming solution of

(13)-(15). Assign dual variables x. to (14) and zkj to (15). The dual of (13)-(15) is

min
r∑
j=1

K∑
k=1

[
Dj(λ

k
j )− (xkj )

>λkj

]
zkj (16)

s.t.

K∑
k=1

zkj = 1, j = 1, . . . , r, (17)

K∑
k=1

zkj x
k
j = x., j = 1, . . . , r, (18)

zkj ≥ 0, j = 1, . . . , r, k = 1, . . . ,K. (19)

For a given λkj , let (xkj , y
k
j ) be the corresponding optimizer in (7). Minimizing a linear

function over the feasible region Sj , of a mixed-integer linear program, is equivalent to

minimizing over the convex hull conv(Sj), of the feasible region. Therefore, Dj(λj) =

minxj ,yj {Lj(xj , yj , λj) : (xj , yj) ∈ conv (Sj)} . Then from the definition of Dj(λ
k
j ) and

Lj(x
k
j , y

k
j , λ

k
j ), the objective function (16) for the column generation problem is

min
r∑
j=1

K∑
k=1

[
Dj(λ

k
j )− (xkj )

>λkj

]
zkj =

r∑
j=1

K∑
k=1

[
(pj(c

>xkj + q>j y
k
j ) + (xkj )

>λkj )− (xkj )
>λkj

]
zkj ,

=

r∑
j=1

K∑
k=1

pj(c
>xkj + q>j y

k
j )zkj ,

and we have the standard restricted master for (9), as described in Lulli and Sen [5]. Hence,

feasible (and at convergence, optimal) solutions to (9) are obtained from the dual solution

of (13)-(15).

Indeed, by using nearly any subgradient-based method to solve (8), one may obtain at

a minimal cost an optimal solution to (9). This fact, while well known to specialists in the

general case (see, e.g., [7, 11, 12]), has only recently come to attention in the context of

Lagrangian relaxation in integer programming [6, 8]. To the best of our knowledge, this
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result has not been stated in the context of DD and BP.

The branch-and-bound algorithm used in DD calls for branching on disagreements in the

primal solutions xkj , j = 1, . . . , r, produced by the subproblems, whereas in BP the solution

to (9) is used for branching decisions, similar to how the solution to the LP relaxation is

used in classical branch and bound for integer programs. Hence, while known to use the

same relaxation (9) in a theoretical sense, DD and BP have been viewed as computationally

different approaches [3, 13]; we have demonstrated a closer computational connection than

previously observed. Based on the effective equivalence between Lagrangian relaxation and

column generation, Frangioni [6] suggests the potential for using both the solution to the

convexification (9) and the primal solutions to the subproblems within branch and bound.

We leave the exploration of this possibility in the present context for future research.

3. Improvements to the cutting-plane algorithm

The cutting-plane algorithm, which in the previous section was shown to be computa-

tionally equivalent to column generation, is known to be unstable and to converge slowly on

practical instances [7, 9]. Modern algorithms for nonsmooth optimization typically apply

some form of regularization to the standard cutting-plane approach, potentially resulting

in a more difficult master program but also providing a significant reduction in the to-

tal number of iterations required. In particular, the proximal bundle method [9] uses a

quadratic penalty in the objective to indirectly regulate the step length at each iteration.

This approach has appeared in the stochastic programming literature as Ruszczyński’s

regularized decomposition [14]. Other approaches include the `∞ trust-region approach,

also known as the boxstep method [15], and level regularization [16, 17]; these approaches

have been used in the context of stochastic programming, for example, by [18] and [19, 20],

respectively. The relative performance of different forms of regularization is generally not

well understood and is typically problem dependent [21, 22].

We focus on the proximal bundle method, which is the most widely used regularization
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method. In this variant, a quadratic penalty term
∑r

j=1 ||λj −λ
+
j ||22 is subtracted from the

objective function (13), and the modified master (13)-(15) is

max
θ,λ

r∑
j=1

θj −
1

2
τ

r∑
j=1

||λj − λ+
j ||

2
2 (20)

s.t.
r∑
j=1

λj = 0,

θj ≤ Dj(λ
k
j ) + (xkj )

>(λj − λkj ), j = 1, . . . , r, k = 1, . . . ,K,

where (λ+
1 , λ

+
2 , . . . , λ

+
r ) is the current “prox-center” with

∑r
j=1 λ

+
j = 0. The regularization

parameter τ is typically adjusted at each iteration; see [23]. Let βj := λj−λ+
j , and consider

the reformulation

max
θ,β

r∑
j=1

θj −
1

2
τ

r∑
j=1

||βj ||22 (21)

s.t.
r∑
j=1

βj = 0 (w)

θj − (xkj )
>βj ≤ Dj(λ

k
j ) + (xkj )

>(λ+
j − λ

k
j ), j = 1, . . . , r, k = 1, . . . ,K. (zkj )

It is typically advantageous to solve the Lagrangian dual of (21):

min
w,z

r∑
j=1

(
K∑
k=1

zkj

(
Dj(λ

k
j ) + (xkj )

T (λ+
j − λ

k
j )
)

+
1

2τ
||w −

K∑
k=1

zkj x
k
j ||2
)

(22)

s.t.

K∑
k=1

zkj = 1, j = 1, . . . , r,

zkj ≥ 0, j = 1, . . . , r, k = 1, . . . ,K.

Using the solution of (22), one can recover the optimal βj by βj = 1
τ

(∑K
k=1 z

k
j x

k
j − w

)
.

Since w is an n1 component vector and the zkj are scalars, (22) has K × r + n1 variables,
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which is typically a significantly smaller number than the (n1 +1)×r variables of (13)-(15)

or (20). We also expect K × r >> n1. If this does not hold, it could be advantageous to

eliminate w by noting that w = 1
r

∑r
j=1

∑K
k=1 z

k
j x

k
j at optimality (this may be derived from

the Karush-Kuhn-Tucker conditions). However, this elimination destroys the particular

structure that is discussed in §4, and a general sparsity-exploiting solver can perform this

elimination automatically.

From standard convergence results [9], we have ||w−
∑K

k=1 z
k
j x

k
j ||2 → 0, j = 1, . . . , r at

convergence of the proximal bundle method. Hence, in the limit, w =
∑K

k=1 z
k
1x

k
1 = · · · =∑K

k=1 z
k
rx

k
r , which are precisely the constraints (18) of the standard column generation

master. So, one recovers the solution to the convexification (9) directly as the optimal w

at convergence of the proximal bundle method.

4. Parallel solution of the master program

It has been observed (e.g., in [5]) that the cutting-plane algorithm described in Figure

1 exhibits scope for parallelism in Step 2, where r independent integer programs must be

solved. The same observation holds for regularized variants discussed in §3. The potential

for parallel speedup, however, is limited according to Amdahl’s law [24] by the serial

execution bottleneck of solving the master program, for example, the LP (13)-(15) or the

QP (22). In this section, we address this bottleneck by identifying the scope for parallelism

in solving the master itself.

A key observation is that the cutting-plane master (14)-(15) has a primal block-angular
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structure; that is, its constraint matrix can be permuted to the form



X X · · · X

X

X

. . .

X


. (23)

The linking rows correspond to the constraints (14), and the diagonal blocks correspond to

the constraints (15) for each j. This property is a direct result of the equality-constrained

formulation (8); in particular, it does not hold if the nonanticipativity representation of

Carøe and Schultz [4] is used.

The proximal bundle master also has this structure in its primal form (21); the com-

putational form (22) has a dual block-angular structure (with constraints in the form of

the transpose of (23)). Note that for quadratic programs to be considered to have block-

angular structure, the Hessian matrix must additionally be permutable to the following

form: 
X X · · · X

X X
...

. . .

X X

 . (24)

Fortunately this structure also holds for (22), because no quadratic terms link zkj with zk
′
j′

if j 6= j′ for any k, k′.

Block-angular structure in linear and quadratic programs has been successfully ex-

ploited for parallelization within interior-point methods [25, 26]. We follow this approach,

a discussion of which is beyond the scope of this paper. Only minimal development, if

any, is required to efficiently solve (22) using an existing structure-exploiting interior-point

code.
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We note that Kiwiel [27] developed a specialized active-set method for solving the QP

master of the proximal bundle method for unstructured problems. However, this active-set

method cannot immediately accommodate the equality constraints of our formulation and

it is unknown whether this approach could be successfully parallelized for block-angular

structure.

5. Implementation and numerical results

In this section, we explore different computational aspects of dual decomposition, with

a view toward parallel computation. All experiments were performed on Fusion, a 320-

node computing cluster at Argonne National Laboratory. Fusion has an InfiniBand QDR

interconnect, and each node has two 2.6 GHz Xeon processors (total 8 cores) and 36 GB

of RAM. Serial experiments were performed on a single node of Fusion.

We used publicly available two-stage SMIP instances. The dcap and sslp instances are

available at http://www2.isye.gatech.edu/~sahmed/siplib/, and the prod instances

are available at http://people.orie.cornell.edu/huseyin/research/sp_datasets/sp_

datasets.html. Basic statistics about these instances are listed in Table 1. We refer the

reader to the indicated websites for further descriptions of the instances. Because of space

limitations, we report only on a subset of the instances available online.

5.1. Serial experiments

We use the sslp and dcap instances to compare the performance of various methods,

executed in serial, for optimizing the Lagrangian dual (8). We experiment with three meth-

ods: (i) the classical cutting-plane method (Figure 1), (ii) the proximal bundle method

(Figure 2), and (iii) the `∞ trust-region (boxstep) method using the trust-region updating

rules of Linderoth and Wright [18]. All algorithms use a relative convergence tolerance

ε = 10−7, although the convergence criteria have slight mathematical differences. In our

C++ implementation of the cutting-plane and `∞ trust-region methods, the master pro-

gram, which is linear, is solved by Clp [28], hot-started by using the optimal basis from the
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Table 1: Test problem statistics. prod instances do not have integer restrictions.

Test 1st Stage 2nd-Stage Scenario

Problem Vars. Intgr. Cons. Vars. Intgr. Cons.

sslp 5 25 5 5 1 130 125 30
sslp 10 50 10 10 1 510 500 60
sslp 15 45 15 15 1 690 675 60
dcap233 12 6 6 27 27 15
dcap243 12 6 6 36 36 18
dcap332 12 6 6 24 24 12
dcap342 12 6 6 32 32 14
prod-small 50 0 10 250 0 220
prod-medium 250 0 10 1400 0 250
prod-large 1,500 0 75 1,450 0 700

previous solution. For the proximal bundle method, we use our implementation as well as

the off-the-shelf open-source implementation ConicBundle [29].

Within our implementation, we experiment with solving the QP (22) using a general

sparsity-exploiting interior-point solver OOQP [30] (with the MA57 [31] sparse linear-

algebra routines) and then using the block-angular-structure-exploiting interior-point solver

PIPS-IPM [32] (with the LAPACK [33] routines for dense linear algebra). Both OOQP

and PIPS-IPM use the same algorithmic implementation of Mehrotra’s predictor-corrector

scheme [34], and each instance is solved from scratch. All mixed-integer subproblems are

solved by using the software package SCIP [35].

Results are presented in Table 2. For each instance and solution method, we report

the total number of iterations, the total execution time, the time spent solving the master

program, and the objective value at convergence. We first observe that the cutting-plane

method requires the largest number of iterations, as expected. For the sslp instances, the

proximal bundle method is superior (in terms of total execution time) to the `∞ trust-region

approach, while the trust-region approach appears to be superior on the dcap instances.

We note the disagreement on objective values, in particular for the dcap instances. This

is explained partially by differing convergence criteria, although in some cases numerical
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Table 2: Summary of result with serial experiments. All methods except ConicBundle were implemented by
the authors. The cutting-plane method is shown to require many more iterations than regularized variants.
Asterisk indicates exceeded time limit (7,200 seconds).

Instance Time (Sec.)

(Scenarios) Method Iter. Total Master Objective

sslp 5 25 (50) Cutting plane 46 172 0.09 -121.6
`∞ trust region 21 71 0.05 -121.6
ConicBundle 15 55 0.38 -121.6
OOQP 9 29 0.06 -121.6
PIPS-IPM 9 29 0.10 -121.6

sslp 10 50 (50) Cutting plane 73 2508 0.90 -364.64
`∞ trust region 71 4352 0.90 -364.64
ConicBundle 27 1521 4.82 -364.64
OOQP 14 571 0.18 -365.62
PIPS-IPM 22 1004 0.44 -364.41

sslp 15 45 (10) Cutting plane 89 5088 0.20 -260.5
`∞ trust region 65 5762 0.11 -260.5
ConicBundle 36 1628 0.14 -260.5
OOQP 39 2374 0.48 -260.5
PIPS-IPM 38 2408 0.26 -260.5

dcap233 (200) Cutting plane 194 1189 116 1837.87
`∞ trust region 58 295 46 1833.37
ConicBundle 34 *7200 7027 *
OOQP 58 337 69 1833.4
PIPS-IPM 68 341 34 1833.4

dcap243 (200) Cutting plane 252 1920 168 2326.13
`∞ trust region 40 189 25 2322.37
ConicBundle 34 *7200 7048 *
OOQP 68 348 106 2321.21
PIPS-IPM 68 266 32 2321.21

dcap332 (200) Cutting plane 321 1348 189 1059.10
`∞ trust region 47 210 74 1059.08
ConicBundle 33 *7200 7079 *
OOQP 77 363 121 1059.08
PIPS-IPM 79 282 43 1059.10
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instability is also present; for example, the cutting-plane method for dcap233 reports a

mathematically invalid objective value that is larger than the optimal objective value of

the original stochastic integer problem.

For the sslp instances, our implementation of the proximal bundle method has a com-

parable iteration count to that of the ConicBundle package, empirically confirming our

algorithmic implementation. However, ConicBundle is unable to solve the dcap instances

to completion because of the time spent solving the QP master. ConicBundle uses a sim-

ilar interior-point method to that of our implementation; the difference in execution time

is attributable to its use of dense linear algebra within the interior-point method. That

is, ConicBundle treats the Hessian matrix of the QP master as entirely dense, whereas in

Section 4 it was shown to be highly structured. (Note that ConicBundle does not solve

the equality-constrainted formulation; the Hessian, however, remains highly structured.)

The results demonstrate that the general sparse linear algebra routines used within OOQP

(which could be implemented within ConicBundle) significantly reduce the computation

time. In addition, specialized linear algebra for the block-angular structure (as used within

PIPS-IPM) can produce a further improvement even before considering parallel computa-

tion.

5.2. Parallel experiments

A preliminary parallel version of the proximal bundle method (Figure 2) was imple-

mented by using the Message Passing Interface (MPI) API [36]. In our implementation,

each scenario is statically assigned to an MPI process, which may be considered a parallel

worker. This worker is then responsible for solving the mixed-integer subproblems for its

assigned scenarios at each iteration. This static assignment is simpler to implement but

is expected to be inferior in its load-balancing properties to a scheme where workers are

dynamically assigned to subproblems.

Table 3 contains results from parallel experiments with instances similar to those of the

serial experiments in Table 2 but with larger numbers of scenarios. Unlike in Table 2, we
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Initialize: Choose a relative convergence tolerance ε.
K ← 1, λ+j ← 0, τ ← 1, m = 0.1.

Solve (7) with λ+j for j = 1, . . . , r, saving optimal solution xKj .

curObj ←
∑

j Dj(λ
+
j ).

Step 1: Solve (22), obtaining optimal w∗, zk∗j , θ∗j , λ
∗
j .

Step 2: Let v = (
∑

i θ
∗
i )− curObj. If v/(1 + |curObj|) < ε, terminate, else continue.

Step 3: K ← K + 1.
Step 4: Solve Dj(λ

∗
j ) for j = 1, . . . , r, saving optimal value Dj(λ

K
j ) and solution xKj .

Step 5: newObj ←
∑

j Dj(λ
K
j ). Let u = 2τ(1− (newObj − curObj)/v).

Step 6: Update τ ← min(max(u, τ/10, 10−4), 10τ). (See [11])
Step 7: If (newObj − curObj > m · v) update λ+j ← λ∗j , curObj ← newObj.

Step 8: Goto Step 1.

Figure 2: Pseudocode of proximal bundle method as implemented. Note that we take a maximization view,
so some signs are flipped from typical statements of the algorithm, e.g., in [11]. An important mathematical
feature of bundle methods is the ability to remove old subgradients (“compress the bundle”) after Step 4;
however, we do not implement this.

consider only the proximal bundle method. Again we solve the master QP using the general

sparsity-exploiting QP solver OOQP and then using the structure-exploiting solver PIPS-

IPM. The structure-exploiting QP solver is run in parallel using the same MPI processes

as the mixed-integer subproblems. Identical runs were performed with 1, 8, 16, and 32

parallel processes, each corresponding to a physical processing core. Recall that the nodes

of the compute cluster have 8 cores each; hence 32 processes corresponds to 4 physical

nodes.

We note a wide range of behavior on the six instances considered. On all instances

except sslp 5 25, we observe significant speedups in the time to solve the master QP by

using PIPS-IPM on up to 16 parallel processes, although the impact on the total execution

time due to the speedups in solving the master varies from the dcap instances to the sslp

instances. For the dcap instances, solving the master QP forms a significant portion of

the execution time in serial. Hence, by solving the master in parallel, in addition to the

mixed-integer subproblems, significant reductions in the total execution time are observed.

For sslp 10 50, the execution time is dominated by the mixed-integer subproblems, and

so speedups in the master have little effect.
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Perhaps the most surprising result is the lack of speedup in solving the mixed-integer

subproblems when more parallel processors are used. For example, there is little speedup

on sslp 10 50 from 16 to 32 processes. In some cases the total time increased from 16 to

32 processes. These results can be explained by the high variability in the time to solve

the subproblems as well as by the lack of dynamic load balancing in our implementation.

Although the behavior can be explained in retrospect, the solution of the subproblems is

typically expected to be a “trivially” parallel computation, yet here it is seen to be far

from such. Further work, both computational and theoretical, will be required to address

this issue.

Returning to the scalability of the master QP, we conducted an experiment evaluating

the relative performances of OOQP and PIPS-IPM on instances with larger numbers of

first-stage variables. As noted in §3, formulation (22) may not be efficient unless K×r >>

n1, recalling that n1 is the number of first-stage variables. Both the sslp and dcap instances

have a small number of first-stage variables. Because we are not aware of SMIP instances

with a larger number of first-stage variables, we use the linear prod instances with 1,000

scenarios (generated by simple Monte Carlo sampling). This substitution is valid because

the structure of the QP master remains the same, and we do not consider the time spent

in the subproblems (which are now linear programs). The results in Figure 3 demonstrate

that as the number of first-stage variables increases, the general sparse QP solver may

become more effective than structure-exploiting solver in serial; yet, when run in parallel,

the structure-exploiting solver is significantly faster.

6. Conclusions

This work identifies dual decomposition as a scalable approach for solving stochastic

mixed-integer programs, a class of optimization problems known for their computational

difficulty. We present the first set of results with a parallel implementation and have ad-

dressed the serial bottleneck of solving the master program. Further work, both theoretical
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Table 3: Parallel experiments with the proximal bundle method. With OOQP, only the MIP subproblems
are solved in parallel; with PIPS-IPM, both the MIP subproblems and the master QP are solved in parallel.
For the dcap instances, significant overall speedups are observed as a result of reducing the time spent
solving the QP master.

Serial Sparse QP solver (OOQP) Parallel QP Solver (PIPS-IPM)

Instance Parallel Time (Sec.) Time (Sec.)

(Scenarios) Processes Iter. Total Master Objective Iter. Total Master Objective

sslp 5 25 (100) 1 8 50.5 0.10 -127.370 8 50.6 0.18 -127.370
8 8 9.1 0.09 -127.370 8 9.7 0.51 -127.370

16 8 5.7 0.10 -127.370 8 5.9 0.06 -127.370
32 8 4.3 0.10 -127.370 8 4.2 0.06 -127.370

sslp 10 50 (500) 1 26 85,837 11.5 -349.132 22 64,659 5.2 -349.133
8 31 38,826 15.4 -349.132 24 25,178 1.9 -349.136

16 27 33,060 11.6 -349.131 28 28,142 1.1 -349.136
32 31 34,274 16.4 -349.137 27 23,349 1.3 -349.118

dcap233 (500) 1 68 1,098 308 1,736.678 66 839 85.3 1,736.674
8 68 450 297 1,736.678 70 167 14.0 1,736.681

16 68 391 298 1,736.678 73 114 9.5 1,736.681
32 68 674 296 1,736.678 70 87 8.4 1,736.674

dcap243 (500) 1 57 819 174 2,165.479 57 690 55.6 2,165.479
8 57 287 169 2,165.479 58 123 8.8 2,165.492

16 57 228 169 2,165.479 59 122 5.4 2,165.490
32 57 414 168 2,165.479 59 111 6.0 2,165.495

dcap332 (500) 1 82 1108 413 1,587.435 80 756 127.2 1,587.256
8 82 545 407 1,587.435 79 134 15.8 1,587.391

16 82 476 408 1,587.435 80 151 9.7 1,587.123
32 82 918 406 1,587.435 77 110 8.1 1,587.439

dcap342 (500) 1 59 872 163 1,902.842 71 857 89.6 1,903.014
8 59 356 159 1,902.842 67 214 10.4 1,903.214

16 59 322 160 1,902.842 56 155 4.3 1,902.893
32 59 475 159 1,902.842 62 161 5.2 1,902.894
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(a) n1 = 50 first-stage variables
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(b) n1 = 250 first-stage variables
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(c) n1 = 1, 500 first-stage variables

Sparse QP Solver
(Baseline)

PIPS-IPM - 1 Core

PIPS-IPM - 8 Cores

PIPS-IPM - 32 Cores

Figure 3: Time to solve QP master for small, medium, and large prod instances, with r = 1, 000 scenar-
ios each. Black line terminates when the sparse QP solver (OOQP) failed due to out-of-memory error.
PIPS-IPM is a parallel block-angular-structure-exploiting QP solver applied to (22). Number of first-stage
variables and size of the bundle (number of columns) per scenario primarily determine the difficulty of the
QP to solve. Parallel speedups at the largest bundle size for (1 to 8 cores, 1 to 32 cores) are (8.5x, 22x),
(8.8x, 28x), and (3.0x, 11x), for the small, medium, and large instances, respectively.
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and computational, is required to address the load imbalance, perhaps considering asyn-

chronicity akin to the work of Linderoth and Wright [18]. This is in addition, of course, to

implementing a branching scheme.

In light of the recent availability of affordable multicore architectures and on-demand

distributed computing, parallelizable optimization algorithms such as dual decomposition

have the potential to be widely used if they can be shown to provide significant speedups

over the state of the art on a single desktop machine.

Our analysis has been limited to two-stage formulations; we leave a treatment of mul-

tistage stochastic programming for future work. We remark, however, that the nested

block-angular structure that could arise in the master of a multistage problem remains

within the framework of parallel structure-exploiting interior-point methods; in particular,

nested structure was considered by [26].
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